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Robustness versus accuracy in shock-wave computations
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SUMMARY

Despite constant progress in the development of upwind schemes, some failings still remain. Quirk
recently reported (Quirk JJ. A contribution to the great Riemann solver debate. International Journal for
Numerical Methods in Fluids 1994; 18: 555–574) that approximate Riemann solvers, which share the
exact capture of contact discontinuities, generally suffer from such failings. One of these is the odd–even
decoupling that occurs along planar shocks aligned with the mesh. First, a few results on some failings
are given, namely the carbuncle phenomenon and the kinked Mach stem. Then, following Quirk’s analysis
of Roe’s scheme, general criteria are derived to predict the odd–even decoupling. This analysis is applied
to Roe’s scheme (Roe PL, Approximate Riemann solvers, parameters vectors, and difference schemes,
Journal of Computational Physics 1981; 43: 357–372), the Equilibrium Flux Method (Pullin DI, Direct
simulation methods for compressible inviscid ideal gas flow, Journal of Computational Physics 1980; 34:
231–244), the Equilibrium Interface Method (Macrossan MN, Oliver. RI, A kinetic theory solution
method for the Navier–Stokes equations, International Journal for Numerical Methods in Fluids 1993; 17:
177–193) and the AUSM scheme (Liou MS, Steffen CJ, A new flux splitting scheme, Journal of
Computational Physics 1993; 107: 23–39). Strict stability is shown to be desirable to avoid most of these
flaws. Finally, the link between marginal stability and accuracy on shear waves is established. Copyright
© 2000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the most common failings in compressible Euler computations is the carbuncle
phenomenon, which appears in the computation of blunt-body problems. This pathological
behavior has been commonly encountered in many high-speed flows, particularly when the
bow shock is aligned with grid lines. In some situations, the carbuncle phenomenon is so
badly developed that the flow field downstream is very far from any engineering prediction
or experimental data. Another failing, called the kinked Mach stem, occurs in unsteady
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computations where shocks propagate along a wall. Before analyzing the way these failings
appear, some results are given on classical upwind schemes such as Roe’s scheme [19] or
Osher’s scheme [13] and more recent schemes such as the AUSM scheme [10] and EFMO [12].
These schemes have been selected because of their shock-capturing capabilities which make
them well-suited for the computation of high-speed flows.

The AUSM variant which has been used is one of the first variants proposed in the
literature, named as the Mach splitting version, and labeled AUSM-M in the present study.
Additional computations have shown that AUSM-M produces nearly the same results as the
recent AUSM+ variant [8].

EFMO results from Coquel’s Hybrid Upstream Splitting technique [2], which has been
applied to the Equilibrium Flux Method (EFM) proposed by Pullin [16] and to Osher’s
scheme. Proposed by Moschetta [12] it shares the robustness of EFM and the accuracy on
shear and contact waves provided by Osher’s method.

In the first section, two classical failings of these schemes are described and various
numerical explanations are reported and discussed. In Section 3, the odd–even decoupling
problem proposed by Quirk [17] is computed using various upwind methods, followed by a
general linear stability analysis. Following Quirk [17] this linear stability analysis is applied to
Roe’s scheme in Section 4 including the effect of Harten’s entropy fix. In Section 5, the linear
stability analysis is applied to two kinetic schemes: EFM and EIM, taking advantage of the
differentiability of their numerical functions. In Section 6, the particular behavior of the
AUSM-M scheme (Mach-splitting variant) is analyzed and its damping properties are com-
pared with the ones from Roe’s scheme. Finally, in Section 8, the stability analysis is applied
to the linearized form of a generic upwind scheme. The link between marginal stability and
accuracy on contact discontinuities is mathematically established. Furthermore, viscous com-
putations are presented to quantify the effects of natural viscosity on these failings.

2. TWO CLASSICAL FAILINGS

Among well known failings in compressible Euler computations, some of them are strongly
connected to the computation of shock waves. The most famous example is the carbuncle
phenomenon, which occurs in the bow shock ahead of blunt-body shapes in supersonic flows.
Unexpected behavior of shock waves can also appear in unsteady computations. One such
behavior is the kinked Mach stem, detailed in the following section.

According to recent results [4,7,17] most Riemann solvers (Roe, Osher) produce spurious
solutions, while Flux Vector Splitting (FVS) schemes yield a physical computation of shock
waves. Numerical results show that the Hybrid Upwind Splitting (HUS) technique [2], which
restores the resolution of contact discontinuities, also makes the flaw appear [4].

2.1. The carbuncle phenomenon

Although FVS schemes are not affected by this problem, they cannot be used efficiently in the
framework of the Navier–Stokes equations since their intrinsic dissipative mechanism tends to
artificially broaden boundary layers. First, computations of the hypersonic flow around a
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Figure 1. 80×160 computations of a forward-facing cylinder, M�=10, temperature contours.

forward-facing cylinder are presented. The freestream Mach number is 10. The computational
mesh is composed of 80×160 cells. In Figure 1(a), one cell over eight is presented for clarity.

First reported by Peery and Imlay [15] with Roe’s scheme, the carbuncle phenomenon is all
the more likely to show that the mesh is aligned with the detached bow shock. It consists of
a spurious stagnation point which moves the shock upstream along the symmetry axis. The
carbuncle phenomenon is highly grid-dependent, but does not require a large number of points
to appear. In certain cases, the numerical solution converges toward a steady solution
including the carbuncle phenomenon even though the residuals have come down to zero
machine accuracy. This means that, for a fixed space resolution, an unphysical solution of the
steady discretized Euler equations can be obtained with a consistent and stable conservative
method. This conclusion is not in contradiction with the Lax–Wendroff theorem [6] since
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when the grid is even more refined, unphysical solutions are more and more perturbed and
eventually the computation fails to converge toward a steady solution.

According to the results shown in Figure 1, AUSM-M, HLLE [3] and EFM are the only
schemes, among those included in this study, which naturally provide a physical calculation
around the stagnation line (Figure 1(c–d)). However, Pandolfi and D’Ambrosio [14] showed
computations where the AUSM-M family yields perturbed contours downstream of the shock.
These results are not surprising since the carbuncle phenomenon is highly grid-dependent.

The EIM scheme was not plotted: its lack of robustness prevents any attempt to compute
this case without reaching negative pressures.

Osher’s scheme blows up in the first time steps for both natural (NO) and inverse ordering
(IO) of the eigenvalues because of the severity of the initial freestream conditions. Steady state
solutions can still be reached by using another suitable scheme during the first time steps.

A steady solution can also be reached with Roe’s scheme by applying Harten’s entropy fix
[5,7]. In principle, this fix should not be applied to the multiple eigenvalue l=u, because that
would just be a convenient way to introduce a minimal amount of dissipation on shear waves.
Indeed, the mathematical justification to modify the eigenvalues is simply to enforce a
second-law principle to the Euler equations in order to get rid of expansion shocks that might
otherwise appear. Thus, the entropy fix should only be applied on eigenvalues associated with
sonic points such as l=u−a and l=u+a. If this is done, Roe’s scheme still develops the
carbuncle problem. However, if this fix is also applied to l=u the carbuncle disappears
provided that a minimum value of Harten’s parameter has been used. Yet, there are two
drawbacks associated with this extended correction: (1) the exact resolution of shock waves is
lost, i.e. the entropy fix introduces an intermediate point in the resolution and (2) boundary
layers are significantly broadened when using a typical value for Harten’s entropy fix function,
i.e. the exact resolution of contact waves is also lost. This entropy fix has also been discussed
by Quirk [17] and Sanders et al. [20] who proposed an extension of this fix.

Because it is based upon the HUS technique, which provides the exact resolution of contact
discontinuities, the EFMO scheme suffers from the same flaw as Osher’s scheme: the inverse
ordering develops the same unphysical protuberance as Roe’s scheme. With the natural
ordering, the shape of the bow shock is not as badly affected, but the stagnation line remains
perturbed.

The fact that the EFM scheme is not affected by the carbuncle phenomenon suggests that
a link should exist between the exact resolution of contact discontinuities (which has been
restored in the EFMO scheme) and this flaw. This is confirmed by results obtained using
upwind schemes belonging to the HLL family. The restoration of the contact surface proposed
by Toro et al. [21] and Batten et al. [1] in the HLL Riemann solver makes the flaw appear
(HLLC scheme, Figure 1(h)), while the HLLE scheme [3] is not affected (Figure 1(g)). Similar
results with others members of the HLL Riemann solvers family are presented in Reference
[14].

Based on numerical experiments, Liou [9] proposed a criterion on the mass flux dependen-
cies to pressure difference. Similarly, Xu [23] proposed a more detailed explanation for the
apparition of this anomalous phenomenon in the Riemann solvers family. On the other hand,
the features of linear instability have been recently studied by Sanders et al. [20] and Robinet
et al. [18]
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2.2. The kinked Mach stem

Another pathological behavior is the kinked Mach stem, which occurs on double Mach
reflection (DMR) cases. The test consists of a Ms=5.5 Mach number shock impinging a 30°
ramp. The principal Mach stem can be severely kinked and an unphysical triple point appears.
Although this problem is an unsteady case, this failing seems to be similar to the carbuncle
phenomenon since it appears when insufficient dissipation cannot counteract transverse
perturbations.

Roe and Osher’s schemes both suffer from this failing (Figure 2(b, d and e)). However, EFM
and AUSM-M schemes (Figure 2(c) and Figure 3(a)) do not seem to be affected. Nevertheless,
density contours do not have the same aspect at the wall. Although the AUSM-M scheme does
not seem to fail on this grid [9], density contours look similar to those obtained with schemes

Figure 2. 200×100 computations of a DMR case, density contours.

Figure 3. Coarse and refined computations of a DMR case, AUSM-M scheme, density contours.
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which suffer from the kinked Mach stem. A more refined computation (Figure 3(b)) shows
that the AUSM-M scheme can produce the kinked Mach stem as well, whereas the EFM
scheme does not, even at this level of grid refinement. This is consistent with the results of
blunt-body calculations where grid refinement has been observed to promote the unphysical
solution.

3. ODD–EVEN DECOUPLING AND QUIRK’S TEST

Quirk [17] reported another insidious failing which can occur in very high resolution simula-
tions. It is an odd–even decoupling problem in which perturbations grow along planar shocks
which are aligned with the mesh. Quirk proposed to test and analyze this shortcoming with a
new case: the propagation of a planar shock in a duct where the centerline is perturbed.

3.1. Description and numerical results

The computational mesh has 800×20 cells for a 40×1 length unit duct. The centerline of the
mesh is perturbed following:

yi, j mid
=yj mid

+ (−1)i · 10−6 (1)

The shock wave is traveling with a Mach number Ms=6. The shock wave Mach number Ms

is defined as us/ar where us is the speed of the traveling wave and ar is the sound speed where
the flow is at rest.

Results are shown in Figure 4. As the shock propagates downstream, perturbations grow
until the shock completely breaks down. In Figure 4, several snapshots have been superim-
posed on the same duct to observe the different schemes temporal evolution. In the case of
successful computations, straight shapes of the shock can be observed at x=12, 18 and 24
length units. Otherwise, perturbations grow, the shock shape is dramatically perturbed and its
velocity slightly increases.

The Roe, Osher, Macrossan EIM [11] and EFMO schemes fail to remain stable in this case.
AUSM-M and EFM schemes provide the same sharp profile. However, a closer analysis shows
that transverse oscillations of the order of the perturbation appear in AUSM-M scheme
profiles while no such oscillations occur with EFM.

It is noticed that better results are obtained with Osher and EFMO schemes when using the
NO of eigenvalues rather than the IO originally proposed by Osher. In Quirk’s test case, the
AUSM-M scheme is the only one which provides both vanishing dissipation on contact
discontinuities and robustness to odd–even decoupling.

Although the entire study deals with first-order schemes, it is important to note that the
extension to second-order computations would not cure these pathological behaviors. Some
comparisons between first-order and second-order computations are provided in Figure 5 for
several schemes. The second-order accuracy is achieved by a classical MUSCL [22] extension.
Reconstructions are calculated using primitive variables and the minmod limiter. Numerical
results show that the second-order extension does not cure the odd–even decoupling (Figure
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Figure 4. Quirk’s test results, Mach number contours.

5(a–b)). Although the shock shape seems to be less perturbed, the computed solution still
remains unacceptable. On the other hand, the MUSCL extension does not trigger the failing
either (Figure 5(c–d)). These results support the choice of only considering first-order schemes
in the following.
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Figure 5. Quirk’s test results, MUSCL extensions, density contours.

3.2. Stability analysis

To find some criteria in order to predict odd–even decoupling, a linear stability analysis is
applied to the 2D inviscid equations for a uniform flow, the state vector of this flow is denoted
U0. This state represents a longitudinal flow whose density, sound speed and Mach number are
r0, a0 and M0 respectively.

According to numerical experiments, sawtooth-like perturbations only develop in transverse
planes. Hence, it is assumed that streamwise fluxes are always balanced. The conservation
equation then becomes:

Uj
n+1=Uj

n−s [Gj+1/2−Gj−1/2] (2)

where s=Dt/Dy and Gj+1/2 denotes the numerical flux function G(Uj, Uj+1).
The aim of Von Neumann analysis is to calculate an amplification matrix A which rules the

behavior of the error vector dUj
n=Uj

n−U0 following the amplification relation dUj
n+1=

A · dUj
n. The spectral radius of A, r(A), i.e. the maximum of the absolute value of the

eigenvalues of A, provides a stability criterion.
By assuming dUj−1= −dUj=dUj+1 the balance of transverse fluxes can be linearized

into:

Gj+1/2−Gj−1/2=G · dUj (3)

where G is a matrix that only depends on U0. After linearization, Equation (2) then becomes:

dUn+1= (I−sG)·dUn (4)

The amplification matrix A can then be expressed as A=I−sG. Hence, if G has some zero
eigenvalues lG, the scheme is then marginally stable as corresponding A eigenvalues are unity
for any Courant–Friedrich–Lewy (CFL) number. Otherwise, the strict stability condition
�lA�B1 leads to a CFL-like condition by developing lA=1−slG:
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�lA�2= (1−sRe(lG))2+ (sIm(lG))2B1 (5a)

1+s(s �lG�2−2Re(lG))B1 (5b)

s �lG�2−2Re(lG)B0 (5c)

Hence, the following CFL-like condition provides a linearly stable scheme:

sB
2Re(lG)

�lG�2 (6)

It should be pointed out that this criterion just comes from a stability analysis of a constant
flow. The shock relations have not been considered in this approach.

4. ROE’S SCHEME ANALYSIS

Quirk [17] has already proposed an analysis of Roe’s scheme failure. The same assumptions
were used concerning streamwise fluxes, but only pressure and density perturbations were
considered.

In the present study, a similar analysis is performed using all components to describe the
perturbed state vector. The interface flux of Roe’s scheme may be written as:

Gj+1/2=
1
2

(Gj+Gj+1)−
1
2

%
k

a j+1/2
k �l0 j+1/2

k �ẽ j+1/2
k (7)

where l0 k are the eigenvalues, ak the corresponding wave strengths and ẽ k the corresponding
right eigenvectors. More details and full expressions can be found in Reference [19].

4.1. Stability of odd–e6en perturbations

Since wave strengths are of the order of the perturbed quantities, the eigenvalues and
eigenvectors which depend on Roe averaged state can be evaluated with the constant state U0.
These assumptions lead to the following properties:

Gj−1=Gj+1 (8a)

a j−1/2
k = −a j+1/2

k (8b)

l0 j−1/2
k =l0 j+1/2

k (8c)

ẽ j−1/2
k = ẽ j+1/2

k (8d)

The conservation Equation (2) can be developed and yields:
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dUj
n+1=dUj

n−2ny

Á
Ã
Ã
Ã
Ä

(dpn/ã2)
U0(dpn/ã2)

r0 d6n

H0(dpn/ã2)

Â
Ã
Ã
Ã
Å

(9)

where 6y=sa0 can be interpreted as a CFL number. To extract an amplification matrix,
Equation (9) can be expressed (assuming a0# ã) as:

Á
Ã
Ã
Ã
Ä

dp
du
d6

dp

Â
Ã
Ã
Ã
Å

n+1

=

Á
Ã
Ã
Ã
Ä

1 0 0 −2ny/a0
2

0 1 0 0
0 0 1−2ny 0
0 0 0 1−2ny

Â
Ã
Ã
Ã
Å

Á
Ã
Ã
Ã
Ä

dr

du
d6

dp

Â
Ã
Ã
Ã
Å

n

(10)

This result shows that density and streamwise velocity errors are marginally stable since they
are associated with an amplification factor equal to one. Then, these perturbations are totally
driven by source terms which are not modeled here. In Quirk’s problem, source terms come
from unbalanced fluxes along the perturbed centerline. The present analysis only describes the
development of an initial perturbation.

Marginal stability confirms numerical experiments where odd–even decoupling does not
depend on the CFL number. This implies that the marginal stability property is an intrinsic
mechanism directly dependent on the flux function definition.

4.2. Effects of the extended entropy fix

In the same way as it does for the carbuncle and the kinked Mach stem failings, an extension
of the true entropy fix can cure the odd–even decoupling failing. The extension consists of
applying this fix to linear waves which govern shear and contact discontinuities. But this has
no mathematical or physical justification: it is just a convenient method to add a minimal
amount of artificial dissipation. None of the true entropy fix (where the fix is only applied to
69a eigenvalues) can cure Roe’s failure.

A similar stability analysis is performed with Roe’s scheme using the extended entropy fix.
Absolute values of the eigenvalues of Equation (7) are replaced by Harten’s function [5] in
which Harten’s parameter d0 is evaluated from the spectral radius according to d0=d(�60�+a0)
where d is a problem-dependent tunable parameter. The present analysis is not affected by the
use of a more elaborate form of d0 [7] since d0 comes directly into the amplification matrix.

Referring to the previous analysis of the original version of Roe scheme (see Section 4.1),
when the entropy fix is applied, the calculation now consists of replacing the eigenvalue �60� by
d0. After the same calculation which has led to Equation (10), pressure and transverse velocity
perturbations can be shown to remain stable under a CFL condition as observed in the latter
case. Amplification factors of density and streamwise velocity perturbations now become:�

1−
2d0

a0

ny
�

(11)

instead of 1 as in the latter analysis of Roe’s original scheme (without any fix).
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Figure 6. Effects of the extended entropy fix, Mach number contours.

Owing to the extended entropy fix, Roe’s scheme becomes stable under a CFL condition.
Surprisingly, numerical results of Figure 6 show that a threshold (d#0.2) is necessary to
remove the odd–even decoupling problem. Results of Figure 6(b) show the limits of the
present analysis since linear stability condition is satisfied for d=0.1, i.e. r(A)B1, while
results still indicate instability. At this point, further analysis taking into account the shock
structure and the contribution of streamwise fluxes is certainly needed.

Nevertheless, the stability analysis carried out for both versions of Roe’s scheme suggests
that marginal stability is not a desirable property for upwind schemes.

5. EFM AND EIM SCHEMES ANALYSIS

Both EFM and EIM schemes interface flux share infinite differentiability with respect to their
left and right states. Therefore, amplification matrix A can be directly calculated as a function
of the Jacobian matrices of the interface flux G(UL, UR). Conservation Equation (2) is
linearized and A is evaluated via G as:

G=2
� (G
(UL

−
(G
(UR

�
U0

(12)

5.1. EFM scheme

The EFM scheme amplification matrix is evaluated following Equation (12). Expressions
remain intricate but, by computing its determinant, matrix G can be shown to have no zero
eigenvalue. Hence, the EFM scheme is strictly stable under a CFL condition. This confirms the
good damping properties observed in numerical experiments.
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5.2. EIM scheme

The same method can be used to evaluate the EIM scheme amplification matrix.
It can be written via G as:

G=
' 2

gp

Á
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ä

U
− ḡM0

a0

0
ḡ

a0
2

M0a0U − ḡM0
2 0

ḡM0

a0

0 0 g+1 0

a0
2UC

g−1
−gM0a0C 0 gC

Â
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Å

(13)

where ḡ=g(g−1), U=1+g((g−1)/2)M0
2 and C=1+ ((g−1)/2)M0

2.
Because of column vectors dependencies, G yields two zero eigenvalues. Indeed, the second

column is equal to −a0M0 times the fourth and the first is a2U/ḡ times the fourth. Obviously,
a third one is 
2/gp(g+1). The trace of matrix G provides the fourth eigenvalue 
2/gp(g+
1). Finally, the complete set of eigenvalues is:

[0 ; 0 ; 
2/gp(g+1) ; 
2/gp(g+1)] (14)

Hence, A has two eigenvalues equal to one and, consequently, the EIM scheme is marginally
stable. This is consistent with the numerical results (Figure 4(e)).

6. AUSM-M SCHEME ANALYSIS

Like Roe’s scheme, AUSM-M interface flux expressions are not differentiable around the
constant state U0. Properties of upwind functions in AUSM-M scheme are used. For
odd–even perturbations, one has:

dMj+1= −dMj=dMj−1 (15)

Hence, by first-order approximations,

Mj+1/2=M+(dMj)+M−(dMj+1)=0 (16a)

Mj−1/2=M+(dMj−1)+M−(dMj)=0 (16b)

pj+1/2=p+(dMj)+p−(dMj+1)=2p+(dMj) (16c)
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pj−1/2=p+(dMj−1)+p−(dMj)=2p−(dMj) (16d)

Convective terms disappear in the conservation Equation (2). The pressure term is the only one
left. It influences the transverse momentum equation following:

r0a0dMj
n+1=r0a0dMj

n−2s [pj
+ −pj

−] (17)

In the AUSM-M scheme, p9 can be linearized as p9=1/2p(193/2M). This leads to the
amplification matrix:

Á
Ã
Ã
Ã
Ä

dr

du
d6

dp

Â
Ã
Ã
Ã
Å

n+1

=

Á
Ã
Ã
Ã
Ã
Ã
Ä

1 0 0 0

0 1 0 0

0 0 1−
3
g

ny 0

0 0 0 1

Â
Ã
Ã
Ã
Ã
Ã
Å

Á
Ã
Ã
Ã
Ä

dr

du
d6

dp

Â
Ã
Ã
Ã
Å

n

(18)

The AUSM-M scheme is therefore also marginally stable. Nevertheless, numerical experiments
indicate that it does not suffer from odd–even decoupling. This result points out that marginal
stability cannot be considered as a criterion to predict odd–even decoupling since it can lead
either to methods which are prone to develop the odd–even decoupling problem or to methods
which will not amplify nor damp perturbations, such as the AUSM-M scheme.

7. DAMPING PROPERTIES

Although the AUSM-M and EFM schemes do not have the same amplification matrix since
the EFM is strictly stable (under a CFL condition) and the AUSM-M is marginally stable,
none of them suffer from odd–even decoupling in Quirk’s test. Nevertheless, the EFM is
expected to have better damping properties. This is confirmed by the following results.

The moving shock is computed using Roe’s scheme until it has covered 9 length units
(t=1.5). This unsteady solution is then used as an initial condition for the AUSM-M, EFM
or Roe’s scheme as if the computation had not been interrupted. The three cases are
represented in Figure 7, where the first slice (x=9) comes from the same computation. First,
Figure 7 shows that the shock profile has already been greatly perturbed while using Roe’s
scheme (Figure 7, x=9). Transverse snapshots show that density profiles suffer from oscilla-
tions of 20 per cent magnitude (Figure 8). The three computations of Figure 7 show the
damping properties of these three schemes:

� an entire computation with Roe’s scheme fail since the shock profile has blown up at
x=15;

� the AUSM-M seems to cope with these initial conditions: perturbations are not amplified
but remain at 20 per cent magnitude (Figure 9) in the third slice (Figure 7(b), x=15);
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Figure 7. Computations from a spurious solution, density contours.

� the EFM scheme proves to have good damping properties since perturbation magnitudes
have decreased from 20 to 0.4 per cent (Figure 10) in the third slice (Figure 7(c), x=15,
with magnified density scales).

This suggests that marginal stability of the AUSM-M scheme might lead to difficulties in
more severe situations as has already been illustrated by the refined computation of the DMR
case (Figure 3(b)).

8. MARGINAL STABILITY AND ACCURACY ON SHEAR WAVES

This section aims at exhibiting a relationship between the exact resolution of contact
discontinuities and the marginal stability of upwind schemes. First, a general form of a central
scheme with second-order matrix dissipation is considered and the stability analysis is applied.
Then, results are extended to all first-order upwind schemes.

The numerical flux of a central scheme with matrix dissipation of second-order writes:

G(UL, UR)=
1
2

(GL+GR)−
1
2

AD(UL, UR) · (UR−UL) (19)

Note that Roe’s scheme belongs to this family by choosing AD(UL, UR)= �((G/(U)(U0 )�
where U0 is Roe’s average state of UL and UR. The stability analysis is applied to this family
of schemes. The balance of fluxes writes:
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Figure 8. Density profiles within the shock for successive vertical grid lines around x=9, Roe’s scheme.

G(Uj, Uj+1)−G(Uj−1, Uj)=
1
2

[Gj+Gj+1−Gj−1−Gj ]

−
1
2

AD(Uj, Uj+1) · (Uj+1−Uj) (20)

+
1
2

AD(Uj−1, Uj) · (Uj−Uj−1)

Since Uj=U0+dUj and the assumption of odd–even perturbations writes dUj−1= −dUj=
dUj+1 Equation (20) rewrites:

G(Uj, Uj+1)−G(Uj−1, Uj)= (AD(Uj, Uj+1)+AD(Uj−1, Uj)) · dUj (21)
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Figure 9. Density profiles within the shock for successive vertical grid lines around x=15, AUSM-M
scheme.

AD(Uj, Uj+1) and AD(Uj−1, Uj) do not need to be developed. Otherwise, it would lead to
second-order terms. Then, both dissipation matrices are approximated by AD(U0, U0). G

matrix is directly expressed:

G=2AD(U0, U0) (22)

If any central scheme with matrix dissipation is required to exactly resolve contact
discontinuities, the dissipation matrix AD(UL, UR) must satisfy the following property:

AD(UL, UR) · (UR−UL)=0 (23)

This simply means that (UR−UL) is an eigenvector associated to a zero eigenvalue of AD.
Since G=2AD, it implies that the amplification matrix A will necessarily have eigenvalues
equal to 1. Therefore, this result show that for an artificial dissipation scheme (scalar or
matricial), exact resolution of contact discontinuities leads to a marginally stable scheme.
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Figure 10. Density profiles within the shock for successive vertical grid lines around x=15, EFM
scheme.

Furthermore, any upwind scheme, after linearization, can be expressed as a central scheme
with matrix dissipation. If the numerical flux is differentiable, the matrix AD can be directly
calculated with Jacobians of the numerical flux G :

AD=
(G
(UL

−
(G
(UR

(24)

Hence, previous results can be extended to all first-order schemes: if any upwind scheme
provides accuracy on contact waves then it is marginally stable. In other words, any upwind
scheme cannot simultaneously satisfy both the following properties: exact resolution of contact
discontinuities and strict stability.
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Figure 11. Effects of the natural viscosity, density contours.

9. VISCOUS COMPUTATIONS

According to the previous section, schemes which yield exact resolution of contact discontinu-
ities are marginally stable and then might suffer from odd–even decoupling. Since this kind of
accuracy is shown to be highly desirable for boundary layer computations, one might expect
that the natural viscosity would be sufficient to damp oscillations generated downstream of the
shock.

The following numerical results invalidate this expectation. In Figure 11, several viscous
computations of Quirk’s problem with Roe’s scheme are presented. The Reynolds number Re
is based on the duct width. In the different computations, all parameters are kept constant
except the Reynolds number, which varies from one case to the other. In most computed cases,
the natural viscosity is not sufficient to maintain straight shock profiles along the computation.
The Reynolds number needs to decrease down to 102 which is a fairly low value for practical
gas dynamics applications. This result shows that, in practice, one cannot rely on the natural
viscosity to damp the numerical instability associated with the exact resolution of contact
waves satisfied by an upwind method.

In practical applications where the Reynolds number is generally higher, the natural
viscosity is not able to damp the odd–even decoupling of shocks. Then one can expect some
difficulties using marginally stable schemes.

Copyright © 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2000; 33: 313–332



ROBUSTNESS VS. ACCURACY IN SHOCK-WAVE COMPUTATIONS 331

10. CONCLUDING REMARKS

The present analysis of odd–even decoupling has contributed to explain why Roe and EIM
schemes fail in some situations. Applying the same analysis, the AUSM-M scheme although
marginally stable, is observed to pass successfully Quirk’s test. Nevertheless, this marginal
behavior is consistent with the observed propagation of perturbations from the centerline
along crossflow planes, and with the failing of the AUSM-M scheme on some other cases such
as the DMR problem for high resolution computations.

Among the upwind methods considered in this study, the EFM scheme has been the only
scheme which provides the desirable damping properties. Unfortunately, the EFM does not
exactly resolve contact discontinuities. These features are shared by most FVS schemes [14]. In
order to be used as a criterion, this analysis certainly needs to take into account perturbations
due to source terms, the shock structure and streamwise fluxes contribution. Furthermore, the
EFM scheme results reveal that strict stability is desirable to avoid these flaws.

The linear stability analysis has proved that any central scheme with matrix dissipation
cannot simultaneously satisfy both properties, and the result is extended to any upwind
scheme. In view of the proposed criteria and based upon the above-mentioned numerical
observations, strict stability and exact resolution of contact discontinuities are not compatible.
This might have heavy consequences on the development of future algorithms for the
compressible Navier–Stokes equations, since natural viscosity cannot cure this flaw by itself.

APPENDIX A. NOMENCLATURE

sound speeda
A amplification matrix

error vectordU
G physical flux vector

numerical flux vectorG
stagnation enthalpyH
pressureP
densityr

spectral radius of Ar(A)
velocity componentsu, 6

U state vector

Subscripts
transverse subscriptj

reference values0

Superscripts
time stepn

Roe average value�
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